

A2000

Multifunctional Power Meter

3-348-981-03 13/5.03

1	Application	4
2	Instrument Description	4
2.1	Instrument Overview	
2.2	Inputs, Outputs and Interfaces	5
2.3	Available Measurement Data	
2.4	Possible A2000 Parameter Settings	10
2.5	Factory Default Instrument Parameters	
3	Operating the A2000	13
3.1	Control Panel	
3.2	Response After Auxiliary Power is Switched On	
3.3	Menu Display for Measurements in 4-Wire Systems	14
3.4	Menu Display for Measurements in 3-Wire Systems	16
3.5	Error Messages	18
4	Configuring the A2000	19
4.1	Configuring the Limit Value Relays	
4.2	Adjustment of Display Brightness and Filter	22
4.3	Measurement Inputs, Configuring the Synchronizing Input	24
4.4	Configuring the Analog Outputs (not with Profibus-DP)	26
4.5	Configuring the SO Pulse Outputs	27
4.6	Data Logger Display and Configuration	28
4.7	Configuring the Energy Meter Mode/Low Tariff	32
4.8	Interface Configuration	34
49	Unloading and Deleting Parameters, Setting the Clock	36

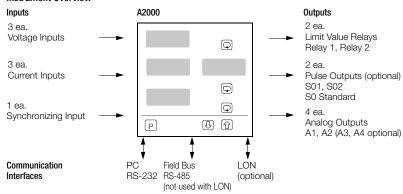
С			

Page

5	Electrical Connections and Circuits	38
6	Interface Description	41
6.1	General	42
6.2	Communications Protocol	42
7	Dimensional Drawing	43
8	Technical Data	44
9	Repair and Replacement Parts Service DKD Calibration Lab and Rental Instrument Service	46
10	Product Support	

1 Application

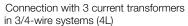
The A2000 measuring instrument is used for the analysis and monitoring of 3-phase current systems. It can be operated with internal transformers in 3-phase current systems of up to 5 A and 500 V nominal voltage, and can perform measurements in medium-voltage systems in combination with external current and voltage transformers.

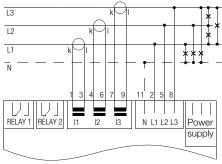

The A2000 acquires voltages, current, frequency and phase displacement in 3 and 4-wire systems. It calculates active, reactive and apparent power, active and reactive energy, as well as the power factor for the individual phases based upon these values.

An FFT (= Fast Fourier Transformation) is performed on the basis of the currents and phase voltages and the harmonic waves are determined up to the 15th harmonic. For the phase voltages, the harmonic distortions of the individual harmonics are indicated as well as the total harmonic distortion, for the currents, the respective RMS values are indicated.

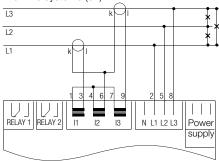
Transformation ratios can be entered to the instrument, which means that all primary measurement data can be displayed directly at the A2000. Maximum values are stored to memory for every measured or calculated quantity. If limit values are exceeded, corrective action can be triggered via relay outputs. Energy meters, recorders, data loggers and control loops can be connected to the digital and analog outputs. The instrument can be integrated into a field bus system or a LON network with the communications interfaces, or its parameters can be configured with a PC.

2 Instrument Description

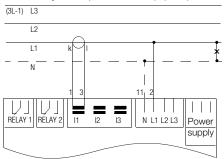

2.1 Instrument Overview

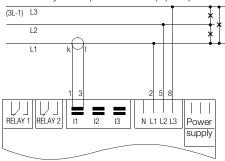


2.2 Inputs, Outputs and Interfaces

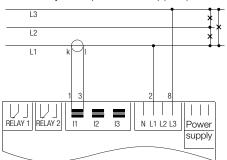

Current Inputs

All current inputs are isolated from one another. If measurements are performed with external transformers, their primary and secondary current values must be entered, in order to enable direct display of current values. Switching between the two meas. ranges (1 A and 5 A) is accomplished via software.

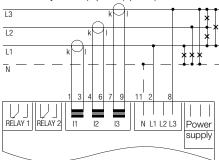



Connection with 2 current transformers in 3-wire systems (3L)

Connection with 1 current transformer in 4-wire systems (balanced load) (3L-1)



Connection with 1 current transformer in 3-wire systems (balanced load) (3L-1)



5

Connection with 1 current transformer in 3-wire systems (balanced load) (3L13)

Connection with 3 current transformers in 4-wire systems (Open Y) (4L13)

For this connection type the accuracy values for the measurement of power, energy and power factor are only observed in the case of low-distortion tension. The setting "Compensating reactive power" is not possible.

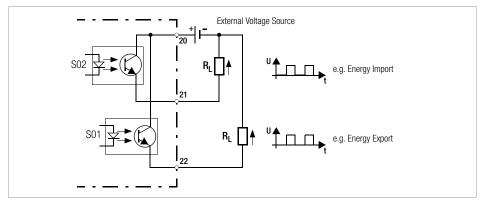
Voltage Inputs

Each voltage measurement input is provided with a safety impedance (incl. the N conductor). Measurements within 3-phase systems of up to 500 V are possible without the use of external transformers.

Mains Supply Power

Mains supply power must correspond to the specified values indicated on the serial plate. Correct connection is absolutely essential!

Synchronizing Input


The synchronizing input is used to select the interval for calculation of the consumption value. An external, potential-free contact must be used to drive this input. However, synchronization can also be internally controlled with the software. Alternatively, a switch-over between low tariff and high tariff is possible with the synchronizing input (see chapter 4.7 on page 32).

Relay Outputs

Limit values can be monitored for every measured or calculated quantity. These limit values can be assigned to the relay outputs.

Pulse Outputs

The values for measured reactive and active energy can be read out at the pulse outputs in the form of standard S0 pulses for the driving of electromechanical counting mechanisms.

Analog Outputs

Each measured or calculated quantity can be assigned to one of the analog outputs. Exception: FFT-values, which can only be read out via the RS-232 and RS-488 interfaces. This allows for the logging or driving of secondary control loops. The outputs can be configured as voltage or current outputs with the help of the DIP switches.

Communications Interfaces

The A2000 is provided with RS232 and RS485 interfaces as standard equipment. The RS485 interface is not included with the LON model due to space limitations.

The **RS232** interface allows for the transmission of measurement values from the A2000 to a PC, as well as external instrument configuration. The chapter entitled "Interface Description" on page 41 provides detailed information regarding the generation of user specific programs. The **RS485** field bus interface allows for the interconnection of up to 32 instruments.

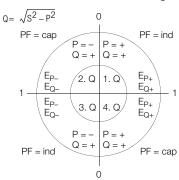
2.3 Available Measurement Data

	Individual Phases			Collective Values					
Phase Voltages	U1	U3	U1 max	U3 _{max}	U $_{\Sigma}$ ⁴⁾		U $_{\Sigma \max}$ 5)		
Delta Voltages	U12, U23	3, U31	U12 max	U31 _{max}	U _{∆avg} ⁴⁾		U _{∆avg max} 5)		
Phase Current	l1	13	I1 _{max}	I3 _{max}		$1_{\Sigma}^{4)}$	l _{Σ ma}	5) x	
Averaged Phase Current	I1 avg	I3 avg	I1 avg max	13 avg max		l _{avg Σ} ⁴⁾	I _{avg} Σ m	51	
Neutral Conductor current	In	-	In _{ma}			_			
Averaged Neutral Conductor Current	In _{av}	g	In _{avgr}			_	_		
Line Frequency	_		_			f	_		
Active Power	P1	P3	P1 max	P3 max	P _Σ		P _{Σ max}		
Reactive Power	Q1	Q3	Q1 _{max}	Q3 _{max}	QΣ		Q _{Σ max}		
Apparent Power	S1	S3	S1 _{max}	S3 _{max}	S _Σ		S _{Σ max}		
Power Factors	PF1	PF3	PF1 min	PF3 _{min}	PF_{Σ}		$PF_{\Sigma min}$		
Energy Mode	L123 1)	LTHT ²⁾	L123 1)	LTHT ²⁾	L123 1)	LTHT ²⁾	L123 1)	LTHT ²⁾	
Active Energy	E _{P1} E _{P3}	-	-	-	E _{PΣ}	$E_{P\Sigma L-}, E_{P\Sigma L+} = 3$	-	_	
Reactive Energy	E _{Q1} E _{Q3}	-	_	-	E _{QΣ}	$E_{Q\Sigma L-,}E_{Q\Sigma L+}$ 3)		_	
Intervalic Active Energy	-		-	_		P _{int Σ}		P int Σ max	
Interv. Reactive Energy	-		_		Q int Σ		Q int Σ max		
Interv. Apparent Energy	-		-		S int Σ		S _{int Σ max}		
THD, 1 st 15 th harmon.	U1h I1h		U1hmax I1hmax	U3hmax, I3hmax		-	-		

¹⁾ L123 = individual phases L1, L2, L3

- The determination of measured and calculated quantities is performed in accordance with DIN 40110 part 1.2 4.96 (non-sinusoidal quantities).
- PEN conductor current is not taken into consideration for the calculation of collective phase current and collective apparent power.
- The averaging of currents I1_{avg} ... I3_{avg} , In_{avg} is performed in the same manner as with a bimetallic indicator, with a setting time of approx. 10 min relative to 99% of the final value.

²⁾ LTHT = low tariff (LT) high tariff (HT)


³⁾ L = low tariff, H = high tariff, + = import, - = export

⁴⁾ only via interface and as a source for relay and analog output

⁵⁾ only via interface

Display of Reactive Power

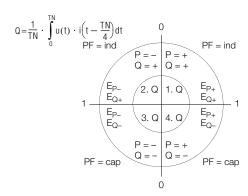
din = calculation of reactive power per DIN 40110 without + or - sign

Lann = compensating reactive power (reactive power is only produced if current and voltage have different + or - signs

$$Q = -\frac{2}{TN} \cdot \int_{0}^{TN} u(t) \cdot i(t) dt$$
for $u(t) \cdot i(t) < 0 = 0$

$$PF = 1.0$$

$$P = -$$


$$Q = 0$$

$$Q = +$$

$$E_{Q+}$$

$$E_{Q$$

5, Gn = calculation of reactive power with + or-

Calculation of Collective Values

$$\begin{split} & U_{\Delta \text{avg}} = (U_{12} + U_{23} + U_{31})/3 \\ & U_{\Sigma} = \sqrt{U_{1}^{2} + U_{2}^{2} + U_{3}^{2}} \\ & I_{\Sigma} = \sqrt{I_{1}^{2} + I_{2}^{2} + I_{3}^{2}} \text{ (without } I_{\text{N}}) \\ & S_{\Sigma} = U_{\Sigma} \cdot I_{\Sigma} \\ & P_{\Sigma} = P_{1} + P_{2} + P_{3} \\ & Q_{\Sigma} = \sqrt{S_{\Sigma}^{2} - P_{\Sigma}^{2}} \text{ (per DIN)} \\ & Q_{\Sigma} = Q_{1} + Q_{2} + Q_{3} \text{ (others)} \\ & PF_{\Sigma} = P_{\Sigma}/S_{\Sigma} \end{split}$$

Possible A2000 Parameter Settings 2.4

Inputs 4 or 3-Wire	Primary Transformer Phase Conductor	Secondary Transformer Phase Conductor	Transformer Primary Current	Transformer Secondary Current	Synchronization Pulse	
Connection	100 V 750 kV	100 V 500 V	1 A 150 kA	1 A, 5 A	external or internal: 1 60 minutes	
Relay 1, 2	Source	Limit Value	Hysteresis	Delay	Alarm Memory	
Max, Min	1) 4)	2)	0 100 Digit	0 30 min	off, on	
Analog Outputs	Source	Output	Start Source	End Source		
1 4	1) 3)	0 20 mA 4 20 mA –20 +20 mA	2)	2)		
Pulse Outputs	Source	Energy Type	Energy Direction	Pulse Rate	Tariff	
S01, S02	L1, L2, L3, Σ	Active, Reactive Energy	Import, Export	1 5000 pulses/kWh (MWh) 1 5000 pulses/kVArh (MVArh)	High, low tariff	
Display	Brightness 0 7	Filter 0 30 s				
Interfaces	Address	Baud Rate		Parity	Protocol	
RS-232, RS-485	0 254	1200, 2400, 4800, 9600, 19200		Even, odd, space, no	E244, 870, Mod1, Mod2	
Energy Meter	Energy Meter Mode			Swith-over high/low tariff		
	L123 / LTHT ⁵⁾		Clock / Synchr. input			
Reactive Power	per DIN / with +/- sign .	/ for Compensation				

¹⁾ Possible sources (see below)

²⁾ Limits are dependent upon the selected transformation ratio at the voltage or current transformer

²⁾ Links at a spiles to P_{int}, Q_{int} or S_{int} (for recording max. values)
4) Interval 0 applies to P_{int}, Q_{int} or S_{int} (current shutdown interval for shutdown options)
5) L123 = individual phases L1, L2, L3; LTHT = low tariff high tariff

Possible Parameter Setting, Data Logger

Trigger: rel	ay 1, relay 2, both, off	Pretrigger: 0%, 25%, 50%, 75%		Disable Trigger: external (synchronizing input), off
Sampling Time:	0,3 s, 0,6 s, 1 s, 2 s, 5 s, 10 s, 15 s, 30 s, 1 min, 2 min, 5 min, 10 min, 15 min, 30 min		1 min, 2 min, 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 1 day, 2 day, 4 day	Storemode: cyclic, once
Trace 1	12: Source, off			

Possible Sources for Relays, Analog Outputs and Logger

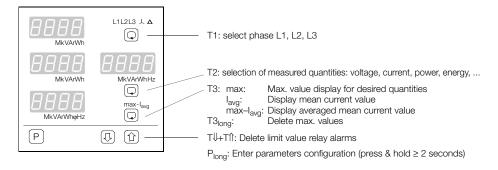
	UΔ	UД	I	I avg	P	Q	S	PF	Fre- quency	P int	Q int	S int	Ext
Source	U12	U1	11	I1 _{avg}	P1	Q1	S1	PF1					
	U23	U2	12	I2 _{avg}	P2	Q2	S2	PF2					Actu-
	U31	U3	13	13 _{avg}	P3	Q3	S3	PF3	f	P $_{int\Sigma}$	Q $_{int\Sigma}$	S $_{\text{int}\Sigma}$	tion via inter- face (not for
	U _{∆mean}	UΣ	lΣ	$I\Sigma_{avg}$	ΡΣ	QΣ	SΣ	PFΣ	1				
	_	_	In	In _{avg}	_	_	_	_					logger)
	for all Ph	ases (only	for Relays)									

Additional Sources for Logger

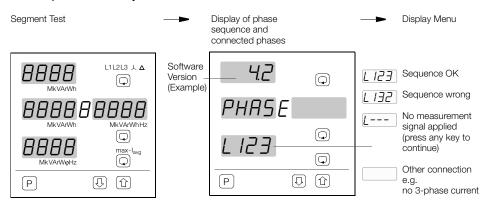
	EP	EQ	l hd	U hd
Source	EP1 / EPΣ _L	EQ1 / EQΣ _L _	l thd	U thd
	EP2 / EP Σ_{L+}	EQ2 / EQ Σ_{L+}	l 1.hd	U 1.hd
	EP3 / EPΣ _H -	EQ3 / EQΣ _H -	· ·	
	$EP\Sigma$ / $EP\Sigma_{H+}$	$EQ\Sigma$ / $EQ\Sigma_{H+}$	l 15.hd	U 15.hd

2.5 Factory Default Instrument Parameters

Inputs	Primary Transformer Phase Conductor	Secondary Transformer Phase Conductor	Transformer Primary Current	Transformer Secondary Current	Synchronization Pulse
4-Wire	500 V	500 V	5 A	5 A	Internal, 15 minutes
	Source	Limit Value	Contact Type	Hysteresis, Delay	Alarm Memory
Relay 1	11	5 A	Max	0	off
Relay 2	U1	240 V	Max	0	off
	Source	Output	Start Source	End Source	
Analog Output 1	ΡΣ	4 20 mA	0 W	2000 W	
Analog Output 2	QΣ	4 20 mA	0 VAr	1000 VAr	
Analog Output 3	12	4 20 mA	0 A	5 A	
Analog Output 4	U2	4 20 mA	0 V	250 V	
	Source	Energy Type	Energy Direction	Pulse Rate	Tariff
S01	ΕΡΣ	Active Energy	Import	10 pulses/kWh	High tariff
S02	ΕΡΣ	Active Energy	Export	10 pulses/kWh	High tariff
Display	Brightness 5	Filter 0			
RS-232, RS-485	Baud Rate 9600	Address 250	Parity Even	Protocol E244	
Energy Meter	Mode LTHT				
Reactive Power	per DIN				

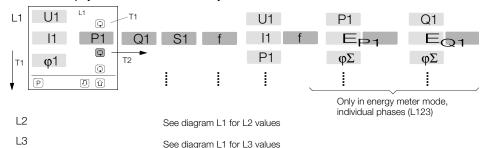

Factory Default Data Logger Parameters

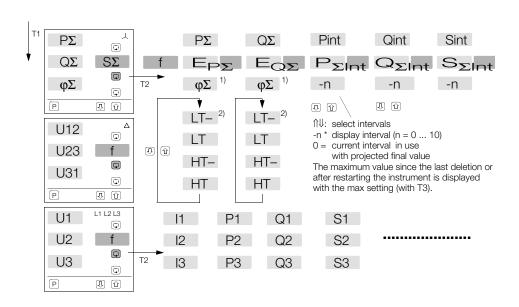
Trigger: off	Pretrigger: 50%	disable Trigger: off
Sampling time: 0.3 s	Storetime: 1 min	Storemode: once
Trace 1 12: all off		

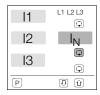

This table applies to the setting: "Set – set default".

3 Operating the A2000

3.1 Control Panel

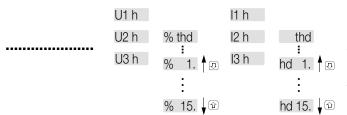



3.2 Response After Auxiliary Power is Switched On

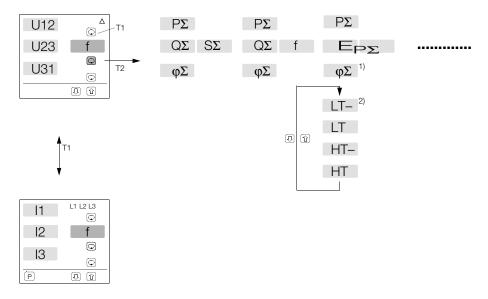

The operating mode displayed prior to shutdown is displayed when the instrument is switched on again.

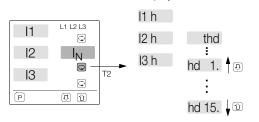
3.3 Menu Display for Measurements in 4-Wire Systems



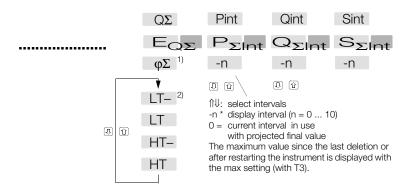

If a rotating field is established at the U or I inputs of the A2000, the neutral conductor current is displayed instead of the frequency.

L1, L2, L3, \downarrow , \triangle and L123 comprise 6 display groups. If a given group is exited, the current display mode is stored to memory and is re-initialized when the group is queried again.


- 1) in energy meter mode L123
- 2) in energy meter mode LTHT



When displaying the maximum values of the harmonic, press key P to indicate the time and date when the respective maximum value occurred. (Function only available for version with data logger)


3.4 Menu Display for Measurements in 3-Wire Systems

If a rotating field is established at the U or I inputs of the A2000, the neutral conductor current is displayed instead of the frequency.

When displaying the maximum values of the harmonic, press key P to indicate the time and date when the respective maximum value occurred. (Function only available for version with data logger)

1) in energy meter mode L123 2) in energy meter mode LTHT

3.5 Error Messages

Parameters Error

Error at Analog Component Calibration Error

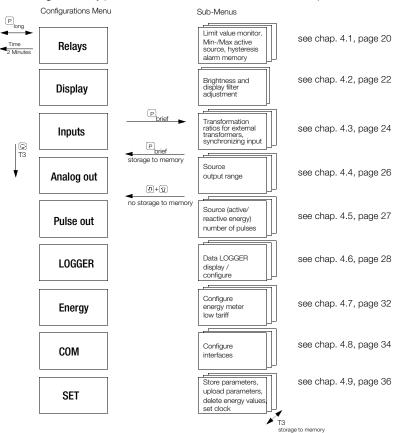
One or more parameters have been irreparably corrupted.

Remedy: Enter Plong configurations menu.

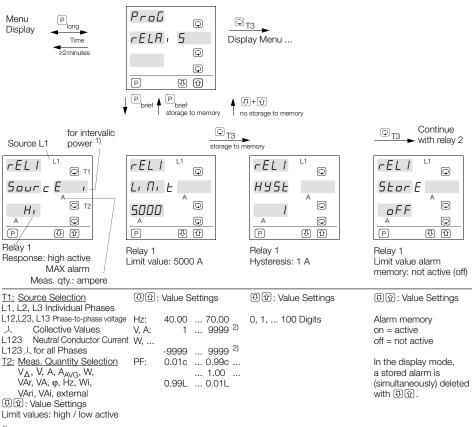
SET USER restores the user parameter set which has been stored to memory.

SET DEFAULT restores all factory default parameters.

Check the measuring voltages with a multimeter in the direct current measuring range to see whether or not they demonstrate a direct current component of greater than 6 V.


If this is not the case, the analog component is defective. Send the instrument to our service department.

The calibration values in the EEPROM have been corrupted.


Send the instrument to our service department.

4 Configuring the A2000

Configuration changes are only possible if the 'LOCK' DIP switch is in the 'off' position.

4.1 Configuring the Limit Value Relays

¹⁾ The source is relative to the current (–0) interval value ($P_{\Sigma int}$, $Q_{\Sigma int}$, $S_{\Sigma int}$) for intervalic power

²⁾ Decimal point depending upon settings of the transformation ratio

Example: Limit value relay 2, but with other quantities and values.

same as Relav 1

② ②: Value setting

0

Delay 40 s

1. 2. 3. 5. 8. 15. 25. 40 s

1, 2, 3, 5, 8, 15, 30 min

Changes to relay parameter settings can be either

to relay parameters:

- disabled or enabled with the "LOCK" DIP switch. For example:
- 1. Enable changes to all parameters: 'LOCK' = position oFF, rel change = dip or on
- 2. Disable changes to all parameters: 'LOCK' = position on, rel change = dip
- 3. Disable changes to all parameters except for relay parameters: 'LOCK' = position on and rel change = on

rel change can only be set to "on" if "LOCK" has previously been set to oFF.

4.2 Adjustment of Display Brightness and Filter

Adjusting display brightness

T3 ► Measuring Inputs Menu...

Adjusting display filter

Parameters for display brightness

①①: Adjustment of values

0 ... 7

ess

The values are adopted immediately upon entry. For permanent setting, however, storage to memory is recommended.

0 minimum brightness

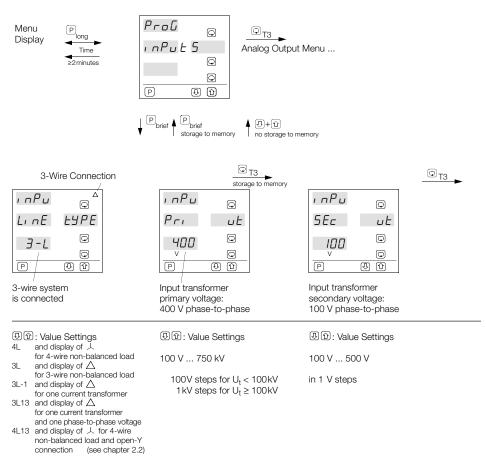
maximum brightness

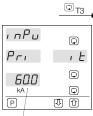
7

Parameters for display filter

(1) 1 : Adjustment of values

Time constant τ in s 0 ... 30


0 no filter effect


30 maximum filter effect

The display filter is a software filter which acts as a lowpass function with the time constant $\tau.$ A time constant between 0 and 30 s can be set to stabilize the display in the event of fluctuating input signals or interfering signals. If an input signal soars abruptly, the displayed value adjusts only gradually to the actual value, in line with the selected time constant. After 5 τ almost 100% of the input signal are displayed.


Set the time constant to 0, if the changes are to be displayed immediately and in an unfiltered manner.

4.3 Measurement Inputs, Configuring the Synchronizing Input

Input transformer primary current: 60.0 kA

Input transformer secondary current: 1.00 A

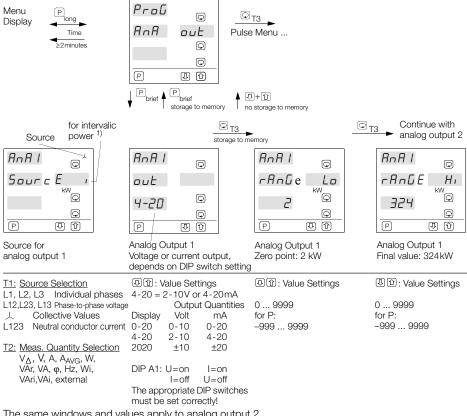
Synchronizing pulse every 15 minutes

②①: Value Settings

1 A ... 50 kA

5 A steps for $I_t < 5$ kA 50A steps for $I_t > 5$ kA 50OA steps for $I_t > 50$ kA

②①: Value Settings

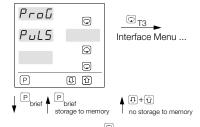

1 or 5 A

② 位: Value Settings

external, 1 ... 60 minutes

E=E ext. synchronizing pulse to synchronizing input, or internal with selection of interval from 1 to 60 min.

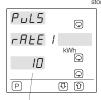
4.4 Configuring the Analog Outputs (not with Profibus-DP)



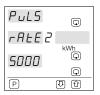
The same windows and values apply to analog output 2. Analog outputs 3 and 4 may also be optionally included.

¹⁾ The source is relative to the latest completed interval value ($P_{\Sigma int}$, $Q_{\Sigma int}$, $S_{\Sigma int}$) for intervalic power

4.5 Configuring the SO Pulse Outputs



Source for pulse output 1


Source, pulse output 1: collective energy (4L)

Pulse output 1
Pulse rate
10 pulses / kWh

Source, pulse output 2: collective energy (4L)

Pulse output 2 Pulse rate: 5000 pulses / kWh

T1: Source Selection L1. L2. L3. 人

T2: Quantity Selection Active/reactive energy kWh, kVArh, Mwh. MVArh

⊕ û: Value Settings

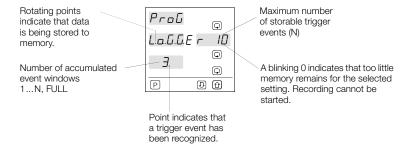
②①: Value Settings

1 ... 5000 pulses / kWh (MWh) or kVArh (MWArh)

Resolution:

1 pulse if rate < 1000 10 pulses if rate ≥ 1000

 $I \Pi P.L$ = import, low tariff; $I \Pi P.H$ = import, high tariff,


P.H = import, high tariff, Import energy from the system (positive sign)

 $\exists EP.L = \text{export}$, low tariff; $\exists EP.H = \text{export}$, high tariff, Export energy to the system (negative sign)

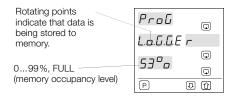
The import and export settings are without significance for reactive energy, which is always indicated with a positive value.

4.6 Data Logger Display and Configuration

Display for Trigger Source Setting rel 1, rel 2, both

If the data logger is not recording, the display blinks alternately: Logger/stop

Attention:

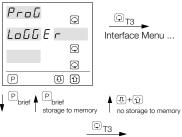

If the real-time clock has stopped, the display blinks alternately: Logger/time date

Operation of the data logger is interrupted if:

- Memory is full and the memory mode is set to "once"
- If a data logger parameter is changed (display: Logger/stop)
- The data logger is started with ① long
- The data logger is stopped with ① long

Attention: Memory is cleared when the data logger is started!

Display for parameter setting Trigger Source OFF


If the power supply is interrupted during a recording session, the A2000 supplements the outstanding samples after restarting the instrument:

- A value of "0" is entered for all measured quantities, except for energies (last meter reading)
- If a trigger source has been selected, the beginning of power supply interruption is always considered to be a trigger.
- If the trigger source has been set to "OFF", the beginning of power supply interruption is recorded in the time stamp of the last trigger. (Time stamp of the first trigger = start of recording)
- If power supply interruption takes longer than the remaining storage rate, the current window is completed and a new untriggered window is produced if a trigger source has been selected.

In the case of trigger source "OFF", cyclical memory mode and a power supply interruption which takes longer than the storage rate, the complete memory will be overwritten.

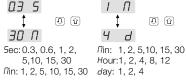
Trigger source setting

Trigger source setting

External trigger disabling

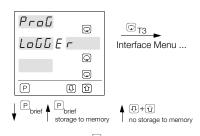
Sampling time

Storage rate


nFF

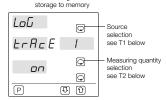
1)

回面



Sampling time Tsa, storage time Tst and number of traces Σ Tr result in a maximum number of storable trigger events N with a memory capacity of 128 kByte $N = (63000 \times T_{sa}) / (T_{st} \times \Sigma Tr)$

(Round N up to whole number: Nmin = 1, Nmax = 99) If the display blinks when the value is selected, the memory is too small for the selected setting.



Memory is overwritten cyclically when full.

Selection of max. 12 quantities to be recorded

The data logger is stopped when memory is full.

T1: Source Selection

L1, L2, L3 Individual phases
L12,L23, L13 Phase-to phase voltage

Collective Values
L123 Neutral conductor current

T2: Meas. Quantity Selection
V_A, V, A, A_{AVG}, W,
VAr, VA, q, Hz, Wi,
VAri,VAi, Wh,
VArh. Ahd. Vhd. OFF

The source is relative to the latest completed interval value for intervalic power ($P_{\Sigma int}$, $Q_{\Sigma int}$, $S_{\Sigma int}$)

If source is set to "off", all subsequent traces are of no significance (menu jumps to start trigger).

Configuring the Energy Meter Mode/Low Tariff 4.7

Only appears for data logger:

Energy Meter Mode

Low Tariff Start Time

Low Tariff End Time

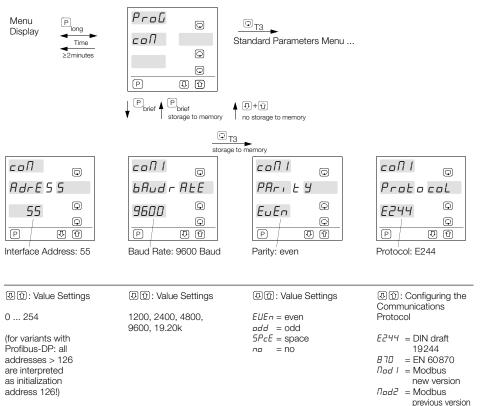
(取合): Mode setting L 123 = Individual phases

LEHE = Low tariff high tariff (import / export) Active and reactive energy

This setting only refers to the energy meters and not to the pulse outputs. After switch-over it is advisable to delete the meter readings, see chapter 4.9 on page 36.

顶而: Source setting

Ł, ΠE=Internal clock with data logger.

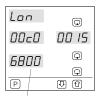

noll=Variant without data logger does not provide for low tariff function via clock.

F=F= Switch-over via synchronizing input LE = input shortcircuited HE = input open

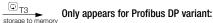
Setting same as for clock, see chapter 4.9 on page 36!! (seconds remain at zero)

If only high tariff is requested, select the same value for start time and end time

4.8 Interface Configuration



These values apply to both the RS485 and the RS232. However, both interfaces cannot be operated simultaneously.


Only appears for LON interface variant:

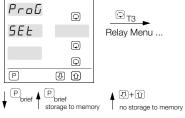
LON service, only if key is pressed and held

LON ID: 00c000156800

Status: Wait Config

①①: LON service

①①: Status:


 $dRE.\bar{z} = Data Exchange$

Err = Error

Only one of these two variant options can be installed. The RS-485 interface is omitted for the LON interface variant, and the RS-485 interface with analog outputs is omitted for the Profibus DP variant.

4.9 Uploading and Deleting Parameters, Setting the Clock

Do not upload default parameters (factory presets)

Do not upload user parameters

Do not store user parameters

Do not delete meter readings

[D] : settings no/yes. For reasons of safety, the ① or ② key must be pressed and held for more than 2 sec.

— yes loads/stores the corresponding parameters——————

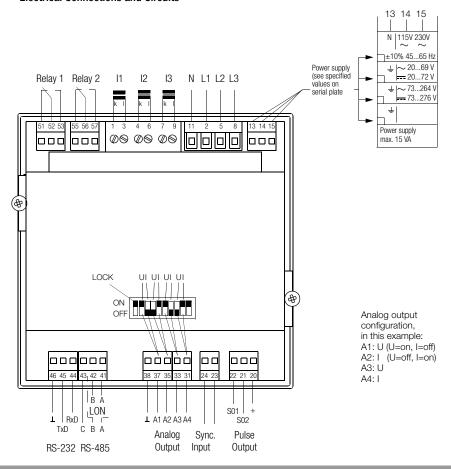
— yes deletes all meter readings T3 storage to memory

Only appears for data logger variant:

Selection: with or without + or - sign

Selection and storage of hours and minutes (corresponding display blinks)

Selection and storage of day, month and year

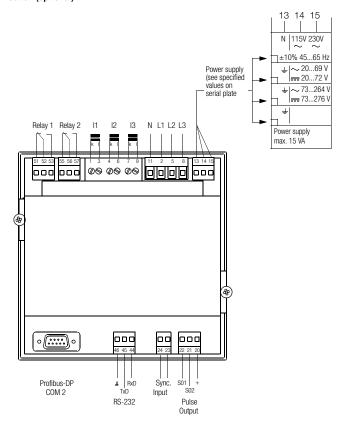

(基位): Status:

dr n = Reactive power per DIN 40110 without + or - sign

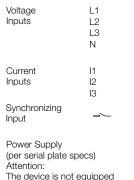
 $5_{I} \, \Box n = \text{Reactive power with } + \text{ or } - \text{ sign}$ $\Box a \cap P = \text{Compensating reactive power}$ Adjust hours and minutes (seconds are set to zero when time is saved to memory) ①①: Selection:

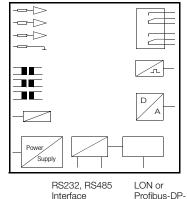
Adjust day, month and year

5 Electrical Connections and Circuits


RS-232 Pin Assignments

Sub-D plug at PC			A2000
No. of pins	25	9	RS-232
DCD	8	1	
RxD	3	2	 TxD
TxD	2	3	 RxD
DTR	20	4	
Gnd	7	5	 1
DSR	6	6	
RTS	4	7	
CTS	5	8	


RS-485 Pin Assignments (not included with LON variant)


Master	A2000		Master	
Α	 Α	 	 Α	Matching
В	 В	 	 В	resistor
С	 С	 	 С	

Profibus DP connection (optional)

Electrically Isolated Circuits

Limit Value Relay 1 Limit Value Relay 2

Pulse Outputs S01, S02 (optional) common reference point +

Analog Outputs
A1, A2, (A3, A4 optional)
common reference point ⊥

6 Interface Description

with an integrated circuit-

breaker

The following sub-chapters include a brief description of the interfaces.

Please refer to the following manuals if you require a detailed description of the interface protocols:

Communications Protocol per DIN draft 19244
Communications Protocol per EN 60870
Communications Protocol per Modbus – Π d I –
Communications Protocol per Modbus – Π ad 2 –
LON Interface
Profibus Interface

Reference No. 3-349-125-03 Reference No. 3-349-128-03 Reference No. 3-349-225-03 Reference No. 3-349-129-03 Reference No. 3-349-091-03 Reference No. 3-349-092-03

Interface (optional)

6.1 General

The instrument is equipped with an RS232, as well as an RS485 interface as standard equipment. However, only one interface may be operated at any given time. If a LON interface has been installed (optional), the RS485 interface is not included. See chapter 5 on page 38 for electrical connections. If the optional Profibus DP interface has been installed instead of the LON interface, the RS-485 and the analog outputs are omitted. See the Profibus DP interface description for electrical connections.

• Char. format: 8 data bits, 1 parity bit, 1 stop bit

Parity: even, odd, space, no

The following settings are required in order to fulfill the requirements set forth in the respective standards:

DIN draft 19244: even, if operated at a modem: no

EN 60870: even

Modbus: even, odd, no

RS-232

Depending upon the driver software, it may be necessary to install jumpers at the master, e.g. DCD+DTR+DSR and RTS+CTS.

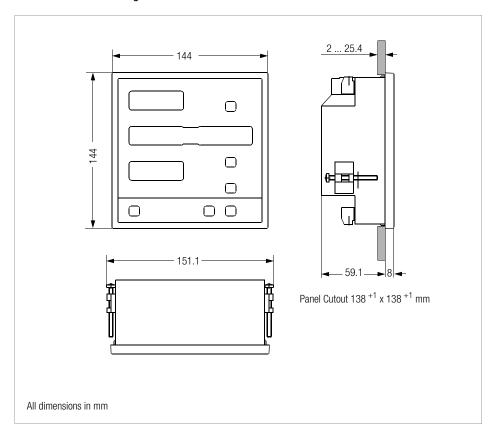
RS-485

If the RS485 interface is used, up to 32 instruments can be interconnected via the bus. In this case, all ABC terminals are connected to one another in parallel. Wiring must be carried out from one instrument to the next; star networks may not be implemented. For bus cables of greater than 5 meters in length, the bus should be terminated at both ends with a surge impedance (e.g. $200~\Omega$ between A and B).

6.2 Communications Protocol

The communications protocol in accordance with DIN draft 19244, EN 60870 or the Modbus protocol is used for communications between the field control and device levels. The A2000 utilizes only a subset of the functions defined in the protocol. Separate descriptions are available for each of the individual communications protocols.

The following functions are not used: query acknowledgement for individual characters and transmission control by means of record sequence bit.


Time Response Characteristics

Ready to transmit/receive after start-up $t_{ber} > 5 \text{ s}$ Character delay time (A2000 transmitter) $t_{zvs} < 3 \text{ ms}$ Character delay time (Master) $t_{zvm} < 100 \text{ ms}$

Response delay time (A2000 transmitter) $10 \text{ ms} < t_{av} < 100 \text{ ms}$

Query waiting time after response from A2000 (master) $t_{aw} > 10 \text{ ms}$

7 Dimensional Drawing

8 **Technical Data**

Measurement Inputs

Voltage Inputs

0 ... 500 ... 550 V. Phase - Phase 40 ... 70 Hz

Phase – N (ground) 0 ... 290 ... 320 V, 40 ... 70 Hz

Overload 1.2-fold $> 4 M\Omega$

Intrinsic Impedance Power Consumption

< 150 mW**Current Inputs** 0 ... 1 ... 1.2 A 0 ... 5 ... 6 A

Overload 1.4-fold cont. 30 A / 10 s, 100 A / 3 s

Power Consumption < 150 mW

Sampling Rate 32 samples per period per measurement value

Measuring Error NV = nominal value. MV = measurement value

 \pm (0.25 % of NV + 1 digit) Current for MV > 2 % of NV

Voltage \pm (0.25 % of NV + 1 digit) Power, Energy $\pm (0.5 \% \text{ of NV} + 1 \text{ digit})$ Power Factor ± 0.02 for U. I > 10 % of NV

Frequency ±0.02 Hz 4-Quadrant Operation Measurement:

> import and export, inductive and capacitive

Interfaces

Baud Rate

RS-232 and RS-485 alternatively:

RS-232 and LON or RS-232 and Profibus-DP

1200, 2400, 4800, 9600,

19200 baud

Parity even. odd. space. no Protocol for

RS-232 and RS-485 selectable:

> GMC device bus (DIN draft 19244). EN 60870 or Modbus (RTU)

Synchronizing input

Onshort-circuited with

 $R < 10 \Omega$

Off open with $R > 10 M\Omega$

Pulse Outputs

Contact open collector

Current 10 mA ... 27 mA ON

OFF < 2 mA8 ... 30 V

External Voltage Pulse Duration 100 ms + 50%Interpulse Period > 10 ms

Analog Outputs

Output Quantity configurable

Current

Ranges 0 - 20 mA. 4 - 20 mA.

+ 20 mA Load max. 500 Ω Load Effect $< 0.8 \mu A / \Omega$

 $(0 \dots 250 \dots 500 \Omega)$ Resolution 0.1% of control range ± 0.5 % of final value Error Limit

Voltage

 $0 - 10 \text{ V}, 2 - 10 \text{ V}, \pm 10 \text{ V}$ Ranges

Load < 20 mA

Load Effect no effect to $> 10 \text{ K}\Omega$ Resolution 0.1% of control range Error Limit ± 1.0% of final value

where control range = upper range limit -

lower range limit, e.g. 1200 W = 1500 W - 300 W (freely selectable values)

Relay Outputs

Switching Capacity $\sim /= 250 \text{ V}, 2 \text{ A}$

500 VA / 50 W (nominal load)

Service Life > 500 000 switching cycles

Display

Type 7-Segment LED

Display Color red
Character Height 13.2 mm

Character Height Display Range

Display Ralige

Energy 99999999999999 Power Factor 1.00

Other Quantities 9999

Power Supply

Supply Voltage 230 V / 115 V $\sim \pm 10\%$

45...65 Hz

73...264 V \sim 45...450 Hz 73...276 V \rightleftharpoons

Power Consumption max. 15 VA

The instrument is not equipped with an integrated circuit breaker. Therefore, during installation, care should be taken to ensure that

 the building where the instrument is installed includes a circuit breaker,

 the circuit breaker is positioned in close proximity to the instrument and is easily accessible to the operator,

 it is clearly marked as a circuit breaking device for the instrument. **Electrical Safety**

Variants IEC 61010-1 / FN 61010-1

Protection Class

Overvoltage inputs: III
Category relays: II

Contamination Level

Operating Voltage $300 \text{ V} \sim / =$

Protection IEC 60529 / EN 60529
Front Panel IP 52

Housing IP 30 Terminals IP 20

EMC

Interference Emission/

Interference Immunity IEC 61326 / EN 61326

Ambient Conditions

Operating Temp. 0 ... 50 °C Storage Temp. – 25 ... 70 °C

Relative Humidity 75% no condensation

Housing

Front Dimensions 144 x 144 mm Panel Cutout 138 ⁺¹ x 138 ⁺¹ mm

Bezel Height 8 mm Installation Depth 59.1 mm

Weight 1 kg (without packaging)
Mounting DIN screw clamps

Terminals screw clamp terminal blocks

9 Repair and Replacement Parts Service DKD Calibration Lab and Rental Instrument Service

When you need service, please contact:

GOSSEN METRAWATT GMBH Service-Center Thomas-Mann-Strasse 16-20 90471 Nürnberg, Germany Phone +49 911 86 02 - 0 Fax +49 911 86 02 - 2 53 E-mail service@gmc-instruments.com

This address is only valid in Germany. Please contact our representatives or subsidiaries for service in other countries.

10 Product Support

When you need support, please contact:

GOSSEN METRAWATT GMBH
Product Support Hotline
Phone +49 911 86 02 - 112
Fax +49 911 86 02 - 709
E-mail support@gmc-instruments.com

Printed in Germany • Subject to change without notice

GOSSEN METRAWATT GMBH Thomas-Mann-Str. 16-20 90471 Nürnberg • Germany Phone +49-(0)-911-8602-0 Fax +49-(0)-911-8602-669 E-Mail: info@gmc-instruments.com www.gmc-instruments.com

